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Abstract— While dense random deployments satisfy cover-
age and sensing requirements, constructing dense networks
of sensor nodes poses economical constraints as well as the
problem of redundancy. We provide an analytical framework
for estimating the redundancy in a random deployment of
nodes without the need of location information of nodes.
We use an information theoretic approach to estimate the
redundancy in a randomly deployed wireless sensor network
and provide the Cramer-Rao bound on the error in estimating
the redundancy in a wireless sensor network. We illustrate this
redundancy estimation approach and calculate the bounds on
the error in estimating the redundancy for a wireless sensor
network with 1-redundancy. We also analytically show the
inter-dependence between redundancy and network lifetime
for random deployment. We further study the energy model
of a WSN as interdependence between the environmental
variation and its impact on the energy consumption at
individual nodes. Defining network energy as the sum of
residual battery energy at nodes, we provide an analytical
framework for the dependence of node energy and sensitivity
of network energy as a function of environmental variation
and reliability parameters. Using a neural network based
approach, we perform adaptive density control and show how
reliability requirements and environment variation influences
the rate of change of network energy.

I. INTRODUCTION

A key challenge in WSNs is the deployment of nodes
to satisfy the requirements of higher network lifetime with
continuous coverage of the deployment region for reliable
sensing. While continuous coverage and connectivity lead to
higher reliability of sensing operation, it takes a toll on the
battery life of individual nodes and consequently reducing
network lifetime. One way of balancing this tradeoff is de-
ploying more sensors than are required to cover the deploy-
ment region. While this redundancy approach can be used to
increase network lifetime by the use of sleep-scheduling and
power-aware routing protocols, the economic constraints of
deploying large number of nodes poses a limitation. The
problem of deployment has been widely studied in the
context of providing uniform coverage, connectivity and

redundancy while optimizing the number of sensor nodes
required for the sensing operation [ [1], [2]]. The random
placement of nodes is preferred over the deterministic
placement approach for remote and hostile environments,
where it is not possible to place sensors in a particular
pattern to cover the entire deployment region, for example,
forest ecology sensing environments. Deployment for such
applications is carried out by randomly scattering the nodes
over the deployment region. While this approach has the
advantage of eliminating the overhead of planning and
deterministic placement, it also gives rise to the problem
of not knowing the density and location of sensors in the
deployment region. In addition, some network operations
require higher density of sensors in regions of high-interest
phenomenon. Since equipping nodes with location detecting
GPS receivers is expensive and we do not know the precise
location of sensors due to the random deployment, we need
to be able to estimate the probability density function (PDF)
of node distribution over the placement region and calculate
the redundancy of nodes. The nodes can then be instructed
to follow some degree of sleep-awake duty cycle to satisfy
the requirements of sensing for that area of the deployment
region while also contributing to higher network lifetime.
The problem we study can hence be modeled as follows: In
a wireless sensor network of randomly deployed, stationary,
power-limited, homogenous sensor nodes designed to be
operational for at least time T, where we have no location
information, how do we estimate the redundancy of nodes in
the network? The time constraint T ensures that all nodes
in the network are designed to perform sensing and data
processing without loss of battery energy for at least entire
duration T, thus increasing reliability of system operation.
One way of doing this would be intelligent processing at
the nodes to discover the number of neighbors in their one-
hop sensing range and calculating the redundancy. However,
this approach, calls for higher number of transmissions at
every node to discover the number of neighbors, which
leads to increase in the depletion of battery energy for
the energy-constrained nodes. Another way of estimating
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the redundancy would be from an analysis of the node
deployment strategy. While this approach eliminates the
need for sensors to discover the level of redundancy in
their neighborhood, it results in greater variance of the
error in estimating the redundancy due to the uncertainty
of the deployment strategy information. In this paper, we
propose an information theoretic approach to estimate the
redundancy in a randomly deployed network. Every node
transmits its node ID to the base station in the initial phase
of the network operation. From these transmissions, the
base station gathers the node IDs and the signal strength
information. The signal strength data is used to estimate the
PDF pX(x) of the node distribution over the deployment
region using the MinMax measure [3]. We then decom-
pose this PDF pX(x) into a primary distribution and an
unknown number of secondary distributions. This unknown
parameter θ is the redundancy that we estimate. Further,
we provide bounds on the support of the random variable x
that describes the PDF of the node distribution over the
deployment region. Finally, we provide the Cramer-Rao
lower bound and an upper bound using Barron’s proof [4]
on the error in estimating the redundancy in the deployment
region.

The next part of this paper focuses on developing an
energy model for WSNs that takes into account the in-
terdependence between the environmental variation and its
impact on the energy consumption at individual nodes. We
use the information about redundancy of nodes in the WSN
to perform adaptive density control with the help of a
neural network algorithm that adapts the data dissemination
according to the change in the environmental phenomenon
being monitored.

The rest of the paper is organized as follows: Section II
presents the preliminaries for the WSN model and the PDF
estimation technique based on the MinMax measure [3].
In section III, we develop the analytical model to obtain
the bounds on the Fisher information and the Cramer-
Rao bounds for the error in estimating the redundancy
parameter. We illustrate our approach with a case of 1-
redundancy in the deployment region. Section IV discusses
the variation of error bounds of redundancy estimation and
validates the relationship between redundancy and network
lifetime. Section V introduces the motivation for developing
an energy model based on environmental variations. Section
VI describes the adaptation of the Boltzmann learning
algorithm for WSNs by taking into account reliability
requirements of the sensing operation. In section VII, we
develop an analytical model for the environment variation
and its influence on node energy. Section VIII describes the
use of the Boltzmann rule in this framework to determine
the density of nodes for the given reliability requirements.

Section IX presents the results of numerical simulation of
the proposed energy model. Finally, section X concludes
the paper and presents directions for future work.

A. Related Work

In [5], the authors study redundancy in terms of re-
dundant broadcasts as a consequence of broadcasting by
flooding in a mobile ad hoc network. By simulation, they
show that for k greater than or equal to four neighbors,
the expected additional coverage is below 0.05 %, i.e.
benefit of rebroadcast is small. In [6], the authors analyze
sensor redundancy by finding bounds on the neighbor set
of a sensor node. They provide an analytic framework to
determine the percentage of redundant area with n number
of neighbors and the probability that a node is completely
redundant. Specifically, they show that if a sensor is com-
pletely redundant, at least three and at most five neighbors
are needed to cover its sensing area. The analytical model
developed in [6] shows that for a 90 % partial redundancy,
i.e. requiring 90% of its sensing area to be covered, needs
five neighbors, which is similar to the simulation results
obtained in [5]. Our work differs in that we do not require
the sensors to be aware of the number of neighbors in their
sensing range and thereby eliminate the need for processing
and storage of the information related to neighbor discovery.

II. PRELIMINARIES

We assume a dense wireless sensor network of homoge-
nous, stationary, power limited sensor nodes densely and
randomly deployed over the deployment region designed to
operate for at least T time units. This time constraint on
operation ensures that the resulting deployment and opera-
tion of the network is reliable for the desired interval. The
problem is to estimate the redundancy in such a deployment
without the knowledge of location information of sensor
nodes. We assume that the base station initiates a phase of
node-discovery, where it broadcasts a query transmission
asking every node to respond to the base station with its
node ID. From the signal strength of the transmissions
of the nodes transmitting their node IDs, the base station
obtains the relative location of the nodes in the deployment
region. This problem is known as the direct problem [3],
which refers to the problem of finding the initial probability
assignment consistent with available information about a
probabilistic system. In our problem formulation, the signal
strength of individual transmissions comprises the available
information about the node locations in the deployment re-
gion. The signal strength information constitutes the sample
data and is used to estimate the PDF of node distribution
over the deployment region. In this paper, we use the
approach developed in [3] to obtain the PDF. We refer the
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reader to [3] for a detailed explanation of the approach.
We proceed to estimate the redundancy of nodes in the
deployment region from the PDF of the node location. We
introduce the following definitions to aid in the redundancy
calculations:

Primary distribution: The primary distribution refers to
the PDF of sensor nodes’ distribution that is necessary
and sufficient to provide coverage and connectivity in
the deployment region. The primary distribution ensures
continuous sensing throughout the deployment region.

Secondary distributions: In order to provide continuous
sensing in spite of battery exhaustion or device failure
in nodes belonging to the primary distribution, as well
as to improve the reliability of the sensing operation, we
deploy additional nodes over the deployment region. The
distribution of these redundant nodes has a PDF called
the secondary distribution.Depending on the sensing re-
quirements, minimum network lifetime constraints and the
economic constraints and resources available for the sensing
operation, we can deploy k distributions of sensor nodes in
addition to the primary distribution over the deployment
region resulting in k-redundancy.

The final step in the problem of redundancy estimation
would be to estimate the number of secondary distributions
(redundancy) over the deployment region from the initial
sample set of signal strengths that provides the relative
location of nodes in the deployment region. We also provide
Cramer-Rao bounds on the error in estimating the redun-
dancy in the deployment. To do this, we determine the
Fisher information of the redundancy parameter θ, which
is obtained from the estimated PDF (solution to the direct
problem). This is a more general version of the redundancy
estimation problem [5] in the absence of location informa-
tion. Our results bring insight into the general problem of
redundancy in dense, large WSNs where the estimate of
redundant distributions can be useful to selectively power
down or sleep schedule nodes in certain distributions to
satisfy lifetime constraints or increase the density of sensing
operation in high interest areas of the deployment region.
The advantage of this approach lies in the fact that nodes
do not need to possess computational complexity to process
information about their neighbors to calculate redundancy in
their coverage areas. The base station performs the process-
ing to determine the redundancy in the entire deployment
region. This approach can also be used to control the density
of ’awake’ nodes in sections of the deployment region by
applying the redundancy processing approach to specific
areas that exhibit high interest phenomenon.

III. CRAMER-RAO BOUNDS IN ERROR IN REDUNDANCY

ESTIMATION USING THE FISHER INFORMATION OF

REDUNDANCY

To illustrate this method of estimating redundancy, we
assume a primary distribution and a single secondary dis-
tribution of nodes over the deployment region, thus creating
a 1-redundant network of nodes, i.e. every point is sensed
by two nodes at all times.

A. Bounds on the PDF of node distribution over the de-
ployment region

Let the primary distribution have a PDF pS(x) and let
the secondary distribution have a PDF pZ(x), where S is
a random variable describing the primary distribution, and
X = S + Z

(τ)
s describes the resultant distribution of all

nodes in the deployment region. The secondary distribution
Z

(τ)
s is a normal distributed random variable ∼ N (0, τ)

independent of S. Thus, X which denotes the PDF of all
nodes in the entire deployment region is a perturbed random
variable with continuously differentiable density px

X (τ).
Defining the score function as ρX(x),

ρX(x) = p′X(x)/pX(x) (1)

and p(2τ) for the density of S + Z
(2τ)
S there exists a

constant [4]
cτ,k =

√
2 (2k/τe)k/2 (2)

such that for all x [4],

p
(τ)
X (x) |ρX(x)|k ≤ cτ,kp

(2τ)(x) (3)

B. Illustration of the redundancy estimation approach for
1-redundancy

A widely used assumption to model random deployment
of nodes over a deployment region [1], [2] is the Poisson
point process. Let the primary distribution pS(x) denote a
Poisson point process of intensity λ.

pS(x) =
λxe−λ

x!
(4)

Since X = S + Z
(τ)
s ,

p
(τ)
X (x) = pS(x)⊗ pZ(x)

.
Using Fourier transforms to obtain the convolution, the

PDF p
(τ)
X (x), is given by

p
(τ)
X (x) =

1
x!j(2x+2)tx+2

√
2π

τ
(5)

The score function ρX(x) for (5) is given by

ρX(x) = −
[
x ln (−t) + 1

x

]
(6)
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The density p(2τ) is obtained as follows

p(2τ) =
√

π

τ

1
x!j2x+2tx+2

(7)

Substituting (9) and (10) in (3) and simplifying we get
the bounds on the density function of the nodes in the
deployment region,

pX(x) ≤
−

√
2π
τ

(
2k
τe

)k/2
1

x!(−t)xt2[
x ln(−t)+1

x

]k
(8)

Substituting (8) in (11) to obtain the support for x, and
evaluating t in the finite integral limits from 0 to T , where
T is defined as the minimum time for which the network
is designed to be operational (i.e. no node has run out of
battery energy), the support for x is given by,

x ≥ 2√
τe
− ln (−T ) (9)

Next, we evaluate the Fisher information of the redundancy
parameter θ. The Fisher information J(X) is given by the
variance of the score function ρ and satisfies the following
bound for the random variables S and X [4],

J(X) = E |ρX(x)|2 ≤ 5.658
τe

(10)

Substituting for τe from (12) in (13),

J(X) = E |ρX(x)|2 ≤
√

2 (x + ln(−T ))2 (11)

In our problem formulation, the unknown parameter, which
we estimate, is the redundancy θ , the number of secondary
distributions. To obtain the Fisher information of the redun-
dancy parameter J(θ) , we note that the Fisher information
J(X) can also be written as

J(X) =
∫

f(x− θ)
[

∂

∂x
ln f(x− θ)

]2

dx (12)

The Fisher information for the redundancy parameter is
given by

J(θ) =
∫

f(x− θ)
[

∂

∂θ
ln f(x− θ)

]2

dx (13)

Further, since ∂
∂x ln f(x− θ) = − ∂

∂θ ln f(x− θ),

∫
f(x− θ)

[
∂

∂x
ln f(x− θ)

]2

dx =
∫

f(x− θ)
[

∂

∂θ
ln f(x− θ)

]2

dx

(14)
which implies J(θ) = J(X).
The Cramer-Rao gives a lower bound on the estimation

of variance of an unknown parameter. For a random variable
X with mean µ and variance σ2,

σ2 ≥ 1
J (X)

(15)

with equality if and only if X is N(µ, σ2).
The inverse of the Fisher information given by 1/J (X) is

the Cramer-Rao bound. The Cramer-Rao inequality places
a lower bound on the mean square error of an unbiased
estimate of X given by σ2. Since J(θ) = J(X),

1
σ2

≤ J(θ) ≤
√

2 [x + ln(−T )]2 (16)

The Cramer Rao bound on the error in estimating the
redundancy θ for the case of a primary Poisson distribution
and a single secondary normal distribution is thus given by

1√
2 [x + ln(−T )]2

≤ 1
J (θ)

≤ σ2 (17)

IV. RESULTS

We now show the significance of (21) in establishing the
bounds of error in redundancy estimation as a function of
the expected network lifetime. We calculate the variance of
pX(x) from (11) as

σ2 = (−T )−
(

2√
τe
−ln(−T )

)

−2K1√

τe
− K2 (−T )−

(
2√
τe
−ln(−T )

)

(
2√
τe
− ln(−T )

)2




(18)
where

K1 =
−1
T 2

√
2π

τ
ln(−T )

and

K2 =

[
K1

ln2(−T )

]2

Evaluating (22) at the support of x from (12), the bounds
on the error in estimating redundancy are as follows,

τe

4
√

2
≤ 1

J (θ)
≤ σ2 (19)

Let τ be a fraction α of the desired network lifetime
T. We show that the error bounds exist value as long as
α constant c1. For c1 ≤ α ≤ c2, bounds may hold true
depending on designed network lifetime T. For α¿ c2, there
is no upper bound on the error information, i.e. the error
in estimating the redundancy is infinite. These bounds are
illustrated as shown in Figure 1. The concentric circles rep-
resent the areas where the bounds exist for corresponding
values of T and α. As seen from Fig. 1, the circles are
plotted in increasing order of desired network lifetime. We
see that with an increase in network lifetime, the upper
bound of the error in estimating the redundancy keeps
decreasing. Since the lower bound in (24) is a constant,
this implies that the error bound gap decreases for higher
desired network lifetime. This can be intuitively explained
as follows: For a larger desired network lifetime with given
number of nodes, we need to maintain a lower value of
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redundancy in the deployment region. A lower value of
redundancy translates to lesser number of ’awake’ nodes
covering the deployment region at any given time instant,
thus increasing the network lifetime. Conversely, for lower
desired network lifetime, higher number of nodes can be
made to cover the deployment region by staying ’awake’
for longer time intervals leading to a higher redundancy.
Thus, the error in estimating a lower value of redundancy
(higher network lifetime) is smaller than that in estimating
a higher value of redundancy (lower network lifetime).
Numerical results from simulating (24) for different desired
network lifetimes T, shows that for τ ≤ 0.7, the error is
bounded. The upper bound of error for T =1000 hours and
100 hours are close and shown as overlapping circles (τ
≤ 0.01). The next larger circle shows the error bound for
T =10 hours with τ ≤ 0.03. The shaded region in Fig.1
represents the value of lower network lifetimes for which
the error bounds may not be satisfied due to decrease in
T. For extremely low value of desired network lifetime, the
error bounds for redundancy estimation are not satisfied,
implying that the error in estimating redundancy is infinite.
Fig.2 shows the upper bound of error estimation as a
function of support of the random variable representing the
node distribution for 1-redundancy with T = 5 hours. We
see that for increasing lower limit of the support, the error
in estimating the redundancy increases due to the inverse
dependence of support on T.

V. NEURAL-NETWORK BASED ADAPTIVE DENSITY

CONTROL

In this section, we describe a neural-network approach
for density control based on the interdependence between
environment variation and node energy. Our first objective
is to develop an approach that takes into account reliability
of the sensing operation. The goal is to vary the density
of ’awake’ nodes according to a user-defined reliability
requirement. For instance, a higher reliability requirement
requires a higher density of nodes in the deployment region
that are continuously sensing and transmitting to a central
base station (BS) that acts as a sink. The second objective
is to account for variation of environment in parts of the
deployment region. Since some areas of the deployment
region may exhibit different environment variations, the
rate of reporting data from nodes to BS should allow for
adaptive density control in different areas of the deployment
region. Specifically, we use the Boltzmann learning rule
to choose the set of active sensors for a given sensing
cycle. Our scheme incorporates features of reliability by
providing means to increase the density of active sensors
and/or increasing the rate of reporting sensed data to the
base station (BS).

Fig. 1. Interdependence of network lifetime and error in redundancy
estimation for 1-redundancy. Higher network lifetimes correspond to
lower redundancy and hence lower error in estimating redundancy. For
the converse case of lower network lifetime, the error in redundancy
estimation is higher.

This approach for density control draws upon two im-
portant areas of research for intelligent WSNs. The first of
these is energy optimization, and a key challenge in energy
optimization for densely deployed WSNs is selecting the set
of sensors that remain ’awake’ for a given cycle. Some of
the criteria developed for choosing the set of active nodes
are environment probing [6] to determine active neigh-
bors, k-coverage [7] and connectivity-based participation
in multi-hop network [8]. While these approaches target
the WSN architecture and individual node lifetimes, they
overlook the dependence of the battery variation on the
variation in the sensed environment. Since nodes typically
report data to the base station when the sensed data exhibits
large variance, a rapidly changing environment influences
the energy consumption at nodes due to higher number
of transmissions from nodes to base station/other nodes.
Hence, it is essential to model the WSN system with
interdependence between the WSN and the environment.
This kind of a system modeling approach reflects the
sensitivity of network lifetime to the pattern of variation
in the environment with the help of bifurcation parameters
of the environment model.

The second is the use of a neural-network based approach
to create intelligent, adaptive WSNs. Approaches from
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Fig. 2. Variation of error bound gap as a function of support of the
random variable describing node distribution. The support is inversely
dependent on the network lifetime. A lower value of the support implies
a higher network lifetime and hence lower error in redundancy and its
estimation.

neural networks (NN) have been widely used in WSNs
for routing, fault recognition and modeling [9], [10], [11]
and [12]. Recent research on specific WSN applications has
exposed the impact of environment modeling on the WSN
performance parameters [13]. In [13], the authors study the
data gathering problem, in which they model the physical
phenomena being sensed as a system of partial differential
equations and have sensors transmit estimates of data rather
than the raw data. Our work differs in that we develop the
WSN energy model by taking into account the environment
variation and the dependence of node energy change on
this variation. We then use the Boltzmann rule to train the
BS about the environment variation, so that it can predict
the sensed data values and reduce the energy consumption
involved in transmission of data from nodes to BS. It does
this by taking into account the desired reliability constraints
of the sensing operation and thus performs adaptive density
control.

VI. BOLTZMANN LEARNING RULE FOR WSN POWER

MANAGEMENT

We assume that the WSN is deployed for on-demand
sensing, where nodes report sensed data to the BS and the
sensed data is transmitted to the BS with the help of direct
communication links between nodes and the BS. In order to
reduce the number of transmissions from the nodes to the
BS and thereby conserve battery energy, the nodes report
data only when the difference between the data sensed in

the current cycle differs from that in the previous cycle by
a value that exceeds a certain threshold. This threshold is
determined by the user demand for reliability, and is known
as the reliability factor γ. The approach we take to integrate
the Boltzmann machine [14] with a WSN can be detailed
as follows.

We assume that the nodes in the WSN are in one of the
following two states: visible or hidden. The visible/hidden
state indicates the state of the transceiver in individual
nodes, and thereby whether the node is ’visible’ to the BS
in terms of its ability to transmit/receive data to/from the
BS. Studies of energy consumption in wireless sensor nodes
indicate that the transceiver energy consumption is an order
of magnitude higher than that of other components in a
wireless sensor node. To facilitate further energy savings,
within each of the visible/hidden states, a node can be
either in the ’0’ or ’1’ modes which signifies the on/off
states of the various components that make up the wireless
sensor node. Thus at any given instant during the network
operation, a node can be in one of the following energy-
saving states: visible-0 (V0), visible-1(V1), hidden-0 (H0),
hidden-1 (H1). The description of each of these states is as
follows:

V1 (visible transmit): transceiver, sensors and data pro-
cessor on.

V0 (visible receive): transceiver and data processor on
H1 (hidden sense): only transducer/sensor on
H0 (hidden sleep): all components off.
Boltzmann learning rule: The aim of the Boltzmann

learning rule-based network density control is to obtain
reliable operation while prolonging network lifetime. We do
this by adaptively learning the variation of the environment
and minimizing the amount of transmission-related energy
expenditure at the nodes. The network goes through two
distinct phases: training/clamped phase and the trained/free-
running phase. The nodes enter V1, V0, H1 or H0 states in
the training and trained phase as follows:

Training/clamped phase:
V1: Initially, all nodes are in the V1 state. Nodes con-

tinuously gather and transmit data to the BS. Most real-
world systems such as temperature variations, humidity and
light variations follow an oscillatory pattern with diurnal,
seasonal or daily variations. WSNs deployed to sense such
parameters can exploit this pattern of variation with external
and parametric noise and the bifurcation parameters. The
BS learns the pattern of environment variation from this
data. Since the data collected follows a high degree of
temporal correlation, the BS decides to stop data collection
from nodes in the training phase when it begins to observe
the identical patterns of data collected, for e.g., photodetec-
tors measuring the amount of light incident on an area at
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certain times of the day on consecutive days. The BS then
instructs the nodes to enter the trained/free-running phase.

Trained/free-running phase:
V0: In order to reduce the number of transmissions from

the nodes to the BS and thereby conserve battery energy, the
nodes report data only when the difference between the data
sensed in the current cycle differs from that in the previous
cycle by a value that exceeds a certain threshold. This
threshold is determined by the user demand for reliability,
and is known as the reliability factor γ. The value of the
reliability factor γ lies in the range 0 to 1, where γ=1
implies a WSN with all on nodes for the entire duration of
network operation, i.e. γ=1 implies the θ- or k- redundancy
of operation. Having obtained the knowledge of redundancy
from the method outlined in Section 3, the BS instructs γ %
of nodes to enter the visible-receive (V0) mode, while the
other nodes enter the hidden mode such that the density of
’awake’ nodes satisfies the user requirements of reliability.
The highest reliability is obtained when all nodes are in the
V1 state and continuously reporting data to the BS. The data
obtained by the BS in the V1 training phase is retrieved for
analysis and prediction in the trained phase. To this end, the
BS then uses prediction functions to evaluate the data values
sensed by the nodes across the network and broadcasts these
values to the nodes. Nodes compare the predicted values
received in the BS broadcast message with the sensed value
obtained in the previous cycle. If the difference fails the
reliability requirement i.e. exceeds the threshold, the nodes
enter the V1 mode and transmit the sensed value to the
BS. The BS can thus fine tune its prediction algorithm to
better reflect the changes in the sensed environment in the
whole or part of the deployment region depending upon
the number of nodes who enter the V1 training phase again
from the V0 trained phase. Thus we see that the reliability
factor controls not only the density of awake nodes but also
the rate of reporting and thereby the energy consumption
of nodes. A higher reliability requirement for the sensing
operation implies a smaller threshold, which can be rapidly
exceeded due to faster variation of the sensing environment
in the deployment region.

H1 and H0: These states constitute the hidden mode
of the learning process. The amount of time spent in the
hidden mode is inversely proportional to the time spent by
the network in the visible/training mode. This is because,
a larger duration of the training phase implies a complex
pattern of environment variation which requires longer time
for the BS to learn and develop prediction functions for
them. Hence, we program the nodes for shorter hidden
mode intervals so that the WSN can continue to reliably
sense the environment.

The nodes instructed to enter the hidden mode first enter

the H0 (hidden-off mode) for γ of the hidden mode duration
and then switch into the H1 mode for the remaining duration
of the hidden mode. This is done so that when the nodes
enter the visible-receive (V0) mode again after leaving the
hidden mode, the data values sensed by the sensors in the
H1 mode can be used as the latest reference with which to
compare the BS prediction.

Assumptions: Since the accuracy of the Boltzmann
learning rule-based density control algorithm relies on the
accuracy of the prediction algorithms and approximating
functions at the BS, we assume that the BS has superior
processing capacity and is not power-limited like the nodes
in the WSN. Nodes have buffer space to store data values
obtained in the previous cycle and possess data processors
with comparator algorithms. The clocks at individual nodes
are synchronized with one another and the BS to achieve
correct hidden mode/visible mode transitions. The commu-
nications links are assumed to be error-free. The only source
of error is the error in the sensed data at nodes, which
reflects as an increase in the energy consumption when the
nodes perform comparisons with the BS’s predicted values
and find that the difference fails the reliability requirement.

VII. ANALYTICAL FRAMEWORK OF THE MODEL

A. Training/Clamped phase

We model the environment by the Van der Pol system of
equations. Van der Pol equations are widely used to model
oscillatory equations in systems such as electric circuits
and population dynamics. The choice of the equations used
to model the environment variation depends on the sensed
environment. As we shall show in this section, the choice
of the equations used to model the environment bears no
influence on the energy model, thereby reducing the model
to a set of equations with bifurcation parameters and noise
in the sensed data. However, the bifurcation parameters
of the system model describing the environment affect the
stability of the system and can be used to design the length
of the energy saving states within a cycle. The model for
the rate of change of environment is given by the noisy
Van der Pol equation [15] in x as a function of time. The
node energy level is given by y, whose rate of change is
proportional to the rate of change of the environment by a
factor p, which we call as the dependence function and also
to the residual node energy at that time.

x′′ + (β + σ1ξ1) x + α
(
x2 − 1

)
x′ + σ2ξ2 = 0 (20)

y′ = y − px− ε (21)

where,α and β are the bifurcation parameters,σ1ξ1 and σ2ξ2

denote the external and parametric noise, ε is the energy per
bit per node [16].
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Constraint: We evaluate this environment variation vs

node-energy variation model subject to a reliability con-
straint γ. The intuition behind the constraint function is
this: for prolonged network operation, we require that
the reliability requirement should not require the nodes
to remain in the V1 (all-awake) mode at all times, since
this causes rapid energy depletion and decrease in network
lifetime. Also, the rate of change of the sensing environment
should be less than the rate of change of battery level at
the nodes to reduce the number of transmissions at nodes.
Taking the product of these constraints, we introduce the
reliability constraint for the WSN as follows: the product
of the reliability requirement and the rate of change of the
sensing environment should be proportional and less than
or equal to the square of the rate of change of node energy.
This constraint ensures that the system remains stable by
providing a means by which the WSN trains the BS reliably
according to the rate of change in the environment model.

γx′ ≤ ky′2 (22)

Using the Lagrangian to find the extrema of (20) subject to
the constraint posed by (22), the optimization function can
be written as

∆(x, y, λ) = f(x, y) + λg(x, y) (23)

where the objective function f(x, y) and the constraint
function g(x, y) are as follows,

f(x, y) = x′′+α
[((

y′ − y + ε
)
/p

)2 − 1
]
x′+β

(
y′ − y + ε

)
/p

(24)
g(x, y) = γx′ − ky′2 (25)

To find the extrema of the function, we obtain the partial
derivatives of (23) and equating them to zero we get,

x′ = ky′2/γ (26)

Assuming that the higher partial derivatives tend to zero,
we obtain

α

γ
y′2

(
ε + y − y′ + 1

)
= 0 (27)

To find the solutions of (27), since α/γ 6= 0,
1) y′2 = 0, i.e.

dy

dt
= 0 ⇒ y = −px− ε (28)

Battery level is a function of environment variation
and node energy consumption.

2) (ε + y − y′ + 1) = 0, i.e.

y′ = ε + y + 1 (29)

But y′ = y − px− ε from case 1. Hence,

x = − (2ε + 1) / (30)

Solving the differential equation in (28) to obtain y,

y = c0e
t − (ε + 1) (31)

where, c0 is a constant of integration.
From (30),

px = − (2ε + 1)
Let p(x) = px, thus the extremum for the objective

function is

(x, y) =
(
− (2ε + 1) /p, c0e

t − (ε + 1)
)

(32)

Thus, the choice of the system of equations used to
describe the environment does not influence the energy
model. The dependence function p which describes the
dependence of node energy on environment variation is used
in the calculation of weights to decide the node states. The
objective function f(x, y) evaluated at this extremum is

f (x, y) = β (2ε + 1) /p (33)

which is a function of the dependence p of node energy on
the environmental variation.

B. Trained phase/ Free-running phase

In the free-running phase, the BS uses the data acquired
during the training phase to reduce the number of trans-
missions from the nodes to the BS. The BS broadcasts the
predicted values to the visible nodes, which in turn match
it with their sensed values. If the difference between the
received prediction and sensed data exceeds a threshold,
i.e. fails the reliability requirement, the visible nodes enter
the visible transmit mode where they broadcast the sensed
data to the BS. At the end of the free-running phase, the
BS increases the density of visible-receive nodes for the
next free-running cycle. This process goes on until the BS
error converges to less than the threshold set at the nodes.
If the procedure fails to converge until the point where the
density of visible node equals the total density of nodes in
the network, the BS initiates the training phase over again.
The system can thus be modeled as follows [17]:

x′ = z
z′ = − (β + σ1ξ1) x− α

(
x2 − 1

)
z − σ2ξ2

y′ = c (y − px− ε) (x− γ)
(34)

Proceeding similar to the training phase, the value of the
objective function at the extremum is

f (x, y) = pγ2c (35)

This shows that the battery level is a function of
• reliability,
• dependence of node energy variation on environment

variation and
• energy required per bit per node.
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VIII. CALCULATION OF NODE WEIGHTS FOR DENSITY

CONTROL

In this section, we illustrate the computation performed
at the BS to determine the set of visible nodes for the
next trained phase. The goal of the weight computation
process is to balance the rate of energy consumption across
the network. At the end of a trained phase, it assigns the
nodes with lowest weights (lowest rate of change of battery
energy) to enter the visible mode. The BS calculates the
weight of nodes based on the number of transmissions from
the node and the history of modes it has been in for the
previous cycles.

A. Training phase

Let the total number of nodes in the network be NT ,
where NT , =Nh+Nb, Nh being the number of hidden nodes
and Nb is the number of visible nodes. In the training phase,
all nodes are visible. Thus, the number of hidden nodes,
L = 0. Modifying the equation for the weight of a node
according to the Boltzmann rule from [14] to adapt it to
the WSN, we get

∆wi = η
(
ρ+

i − ρ−i
)

(36)

where,
ρ+

i =
∑
α

∑

β

P+
αβsj|αβsi|αβ

and
ρ−i =

∑
α

∑

β

P−
αβsj|αβsi|αβ

The states of the hidden nodes are denoted by β, where
β =1, 2, ...2L , The states of the visible nodes are denoted
by α, where α =1, 2, ...2K

P−
αβ : joint probability that the visible nodes are in state α

and the hidden nodes are in state β, given that the network
is in its free-running condition,

P+
αβ : joint probability as above on the states of nodes ,

but for the network in its clamped condition.
si|αβ : state of node i given that the visible nodes are in

state α and the hidden nodes are in state β.
η is the learning-rate parameter given by η = ε/T . The

weight of a node is proportional to the rate of change of
battery level at that node. From (31),

wi = kc

[
c0e

t − (ε + 1)
]

(37)

Since sj|α1 = si|α1 = 1 in the training phase i.e., V1,

ρ+
i =

(
2NT

)
/4

ρ−i = 0

(38)

wi = kc

[
c0e

t − (ε + 1)
]

= η
(
2NT

)
/4 (39)

which is only a function of time. This shows that the
weights are only a function of time in the training phase.
The intuition behind this is that in the longer the training
phase, it implies a complex pattern of environment variation
in the deployment region. This requires more number of
transmissions from the nodes to the BS for the BS to learn
about the environment and hence the weights of a node are
only a function of time.

B. Trained phase

Adopting a similar procedure as above for calculation of
weights in the trained phase, we show the weight of a node
in the trained phase is

wi = 0−ρ−i =
2Nb∑

α=1

2(NT−Nb)∑

β=1

sj|αβsi|αβ

2
= kc (ε− pγ) (40)

This shows that the weights are only a function of the
reliability parameter γ. This is because, in the trained phase,
the energy expenditure at a node due to communication with
the BS is influenced by whether the difference between the
BS predicted value and the sensed value stored in the node
exceeds γ.

IX. RESULTS

In this section, we obtain the simulation results of the
Boltzmann learning-rule based WSN. We simulate a net-
work of 100 nodes randomly scattered across a square
deployment region of side 20 meters. Defining network
energy as the sum of the battery energy of all nodes in the
deployment region, we plot the rate of change of variation
of the network energy in Ampere-hours/kilo-hours) as a
function of time in kilo-hours for different a. dependence
models of battery energy on environmental variation in the
training phase (Fig.3) and b. reliability parameters in the
trained phase (Fig.4).

Training phase: Fig. 3 shows the variation of the network
energy as a function of the dependence model between
the node energy and the environment variation model in
the training phase. For this study, we use a reliability
requirement of 0.5 for a network of 100 nodes. We see
that when this dependence assumes the form of a quadratic
polynomial, the rate of change of network energy is the
highest compared to when the dependence is a constant.
This sensitivity analysis to p illustrates the energy- con-
serving nature of the free-running trained phase where
the BS optimizes the density of visible nodes to suit the
reliability requirements. The rate of change of network
energy approaches zero when the BS’s prediction error
matches the reliability requirement and the network enters
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Fig. 3. Training phase:Rate of change of network energy as a function
of dependence of node energy on environmental model in the training
phase. The constant dependence results in lowest rate of change of
network energy.

the trained phase. A comparison of the rate of change of
network energy in training (Fig. 3) and trained phase (Fig.
4) shows that this transition to the trained phase causes the
gradient of the network energy variation to be less than that
in the training phase.

Trained phase: In Fig. 4, we model the dependence
function p, as an exponential function of the environment
change parameter. The sensitivity analysis to reliability
requirements shows that the rate of network energy varies
with the desired reliability parameter γ. For high values of
reliability of the sensing operation, the rate of change of
network energy is higher. This is because, for higher ?, the
BS increases the density of nodes in the visible mode, the
density of nodes in the hidden-sense mode and also the rate
of reporting, thus causing faster network energy depletion.
We also model the case, where all the nodes are sensing,
processing and transmitting for the entire duration of the
deployment, i.e. all nodes are in the visible-transmit mode
for γ=1. As seen from Fig.1, this reliability requirement
causes higher variation of network lifetime than for lesser
values of γ. For γ =0.1, which represents the case where the
node energy has minimal dependence on the environment
variation due to majority of the nodes always being in the
hidden mode, the rate of change of network lifetime is much
lower. For instance, for γ=1, the rate of change of network
energy for the interval between the first 50 - 80 hours in
the trained phase is higher by an order of magnitude than
for γ =0.1.

Fig. 4. Trained phase : Rate of change of network energy as a function
of time for different reliability requirements. The reliability requirements
dictate the density of visible nodes, which in turn affects the rate of
change of network energy in the WSN. estimation.

X. CONCLUSIONS

The paper presented an analytical model to estimate
the redundancy in a randomly deployed WSN without the
use of location information. We illustrated the redundancy
calculation approach and obtained the bounds on the er-
ror in estimating the redundancy for 1-redundancy in a
randomly deployed WSN. We also showed the mutual
dependence of network lifetime and redundancy in node
deployment. These results can be used to design efficient
sleep scheduling mechanisms to improve network lifetime
by selectively controlling the density of ’awake’ nodes
in the deployment region. Further, the use of redundancy
information can be employed to increase the reliability of
sensing operation for regions of high-interest phenomenon
that require larger number of sensors to accurately sense
the environment. We also presented an energy model for
wireless sensor networks by taking into account reliability
requirements of the sensing operation and the impact of
sensing environment variation on the rate of change of
network energy. We presented an analytical framework for a
NN- based (Boltzmann-learning rule) model to calculate the
density of ’awake’ nodes in the deployment region to satisfy
the reliability requirements and accurately model the impact
of environment variation on node energy. We observed
that a higher reliability requirement and rapidly fluctuat-
ing sensing environments increased the rate of change of
network energy. These results show the significance of sen-
sitivity analysis of environment modeling on the lifetime of
the WSN by creating sensing-environment and reliability-
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centered WSN topology. Our future work would involve the
development of accurate prediction algorithms at the BS
by modeling the system with a game-theoretic approach.
The aim of the BS would be minimize the prediction error
so that it would have to perform fewer computations to
determine the set of awake nodes for the next cycle. Future
work would also include improvement of this energy model
by including lossy communication links in the deployment
region.
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